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Abstract Sequencing by tunneling is a next-generation
approach to read single-base information using electronic
tunneling transverse to the single-stranded DNA (ssDNA)
backbone while the latter is translocated through a narrow
channel. The original idea considered a single pair of elec-
trodes to read out the current and distinguish the bases [1,2].
Here, we propose an improvement to the original sequencing
by tunneling method, in which N pairs of electrodes are built
in series along a synthetic nanochannel. While the ssDNA is
forced through the channel using a longitudinal field it passes
by each pair of electrodes for long enough time to gather a
minimum of m tunneling current measurements, where m is
determined by the level of sequencing error desired. Each cur-
rent time series for each nucleobase is then cross-correlated
together, from which the DNA bases can be distinguished. We
show using random sampling of data from classical molecu-
lar dynamics, that indeed the sequencing error is significantly
reduced as the number of pairs of electrodes, N , increases.
Compared to the sequencing ability of a single pair of elec-
trodes, cross-correlating N pairs of electrodes exponentially
improves this sequencing ability due to the approximate log-
normal nature of the tunneling current probability distrib-
utions. We have also used the Fenton–Wilkinson approxi-
mation to analytically describe the mean and variance of the
cross-correlations that are used to distinguish the DNA bases.
The method we suggest is particularly useful when the mea-
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surement bandwidth is limited, allowing a smaller electrode
gap residence time while still promising to consistently iden-
tify the DNA bases correctly.
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1 Introduction

A cheap and fast method to sequence DNA would revolu-
tionize the way health care is conducted [3]. With such a
method, medicine would be catered to the individual based on
genetic implications, an approach that goes under the name
of personalized or precision medicine. The research behind
DNA sequencing is rich and plentiful, with many techniques
that have much potential. Two of the most successful tech-
niques currently used, single molecule real time sequencing
(SMRT) [4] and ion torrent semiconductor sequencing (ITS)
[5], need on the order of 10 h, including full preparation time,
for one run, which sequences 1 Gb and 100 Mb, respectively
[6]. Both techniques take advantage of massively-parallel
sequencing to achieve these benchmarks.

However, most of the current sequencing techniques,
SMRT included, require fluorescent dyes to distinguish the
DNA bases [6]. In other words, these techniques cannot
greatly improve in speed and are inherently costly, both for
the sample preparation, equipment and to operate. On the
other hand, ITS does not utilize fluorescent dyes but instead
depends on the detection of hydrogen ions released once
a deoxyribonucleotide triphosphate forms a covalent bond
with a complementary nucleotide [5]. This means that the
overall costs are smaller in comparison but the technique nev-
ertheless suffers from small read lengths of about 200 base
pairs per run [6], implying the technique would be difficult
(or too costly) to apply to de novo sequencing.
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Fig. 1 Schematic for the multiplexed transverse electronic sequencing
device. The solid-state nanopore is outlined in black with the dashed
lines representing the conical entrance/exit that leads to the cylindri-
cal nanochannel. Within the nanochannel is the ssDNA strand to be
sequenced and several pairs of embedded gold electrodes labeled 1, 2,
... N to indicate the existence of a series of N pairs of electrodes. Each
pair of electrodes would be attached to a voltage source so that the DNA
bases align with the field and the tunneling current flows stronger. In
addition, a single pair of biased electrodes would be placed diamet-
rically opposite above and below the pore to push/pull the negatively
charged ssDNA strand through the nanochannel (Color figure online)

Quite recently a new approach has been suggested that
envisions the sequencing of single-stranded DNA (ssDNA)
with electronic currents transverse to the DNA backbone as
it passes through a nanochannel [1,2]. A schematic is shown
in Fig. 1. This approach has been recently demonstrated
experimentally by sequencing micro-RNA and short DNA
oligomers [7].

When the electrodes are fabricated so that the gap only
allows a single base to fit at a time [8], one can truly obtain
single-base discrimination without the need of amplifica-
tion or chemicals. Because of the speed of electronic-based
detection, one can achieve sequencing rates of 1.2 Mb/h with
0.1% error per base without accounting for any parallelism
or preparation time. This rate can be achieved with only 10
kHz sampling rate [9], given that about 30 measurements are
needed per base (derived using data from [10]). An increase
of sampling rate to 1 MHz would achieve a sequencing rate
of 120 Mb/h with the same error. Finally, increasing the error

by an order of magnitude would only slightly decrease the
sequencing rate [2]. Since this nanopore method does not
require the ssDNA strand to be of a certain length to function,
the read length depends solely on the sequencing device’s
bandwidth and its ability to keep the ssDNA strand untangled
and consistently translocating through the pore. In addition,
as a label-free method, the technique benefits from a modest
preparation time and reduced operating costs.

On the other hand, due to the speed of translocation of the
ssDNA and the linear width of a single nucleotide, roughly
6.3 Å [11], the current through each nucleotide has to be
measured in a short period of time with limited bandwidth.
Experiments have found the translocation speed to be difficult
to control [9,12], yet the gate modulation of nanopore surface
charges promises to reduce this speed and add an element of
control to the instantaneous velocity of the ss-DNA strand
[13]. With few current measurements per base, it becomes
hard to identify the sequence of the ss-DNA strand without
substantial errors. Therefore, if bandwidth is an issue, we
suggest the use of a nanochannel containing several pairs of
electrodes in series like in a multiplexing configuration, as
shown in Fig. 1. We show that the signals from each pair
of electrodes can be cross-correlated to significantly reduce
noise and consequently reduce errors in base identification.
To prove this point we have analyzed the cross-correlations
of many ssDNA translocation realizations, finding that with
a limited bandwidth already two pairs of electrodes far sur-
pass the sequencing capability offered by a single pair. In
addition, irregular electrode spacing can be used to help iden-
tify coherent noise in the system. The approach we propose
expands upon the recent work by Ahmed et al. [14], where
the multiple electrode current readout was considered for
the case of a multilayer graphene nanopore [15]. Here, we
use the molecular dynamics simulations to characterize the
noise along with a different cross-correlation analysis to esti-
mate the signal to noise improvements on the multiple contact
readout of solid-state nanochannels. Even though we use syn-
thetic nanochannels and gold electrodes in our approach, our
cross-correlation results can be extended to any multiplexed
DNA sequencing scheme that utilizes electron tunneling (e.g.
scanning tunneling microscope, STM, techniques).

In experiments, the signal from electrons tunneling through
a single nucleotide of ssDNA switches between a high aver-
age current state to a low average background current state
in a pulse-like manner [9,12,16]. Short intervals of back-
ground current occur because of the changing adsorption
between the DNA base and the electrodes while long inter-
vals are explained by the absence of a DNA base [7]. Using
current thresholds and the time spent in each background
current intervals one can mark the beginning and end of
each nucleotide in the time series. With this method the
j th nucleotide that travels through the first electrode pair
can be matched with the j th nucleotide that travels through
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the following electrode pairs for cross-correlation. After the
current time series from the i th electrode pair for the j th
nucleotide is isolated, the short intervals of background cur-
rent can be removed to leave only the pulses of current indica-
tive of tunneling through the j th nucleotide of ssDNA. We
define the resultant signal as I j

i .

2 Molecular dynamics methods

To simulate this process, we first use a combination of molec-
ular dynamics (MD) performed with NAMD2 [17] and quan-
tum transport calculations to obtain a current time series from
a single electrode pair for each of the four bases: adenine (A),
cytosine (C), guanine (G), and thymine (T ). The contribu-
tions from neighboring nucleotides to the current have been
found to be negligible provided the electrode cross-section is
on the order of 1 nm2 [1]. The MD results we use here have
been taken from previous work in [10] where the simulation
proceeds as follows. A double-conical Si3N4 nanopore with
embedded gold electrodes in the center is built with a min-
imum diameter of 1.4 nm and a maximum diameter of 2.5
nm (similar to Fig. 1 with just one electrode pair). The inner
diameter is such that the homogeneous ssDNA can just pass
through so that the electrode spacing can be at a minimum
to enhance the signal. The ssDNA is placed parallel to the
longitudinal axis so that the first base has past the entrance of
the pore. The pore-DNA system is solvated in a TIP3P water
sphere and constrained with periodic boundary conditions in
an NVT ensemble with a 1 M solution of K+ and Cl−. The
system is evolved in time with 1 fs steps and kept at room
temperature with Langevin damping. To drive the ssDNA
through the pore within a feasible simulation time a global
longitudinal electric field of 6 kcal/(mol Å e) is applied.
When a base of ssDNA sits in between the electrodes the
longitudinal pulling field is turned off and a transverse field
of the same magnitude is turned on to calculate the electronic
transport. This is an approximation to the transverse field
being much larger than the longitudinal field, which is the
optimum operating regime for the present sequencing device
as the bases are better aligned with the transverse field [2].

The current is calculated with a single-particle elastic
scattering approach using a tight-binding Hamiltonian [18].
Coordinate snapshots of the molecular dynamics are taken
every ps, with which a tight-binding Hamiltonian is created
for the region between the gold electrodes. The Fermi level
is taken to be that of bulk gold. To obtain the tunneling cur-
rent through the ssDNA, we use the single-particle retarded
Green’s function,

GDNA(E) = 1

E SDNA − HDNA − �t − �b
, (1)

where E is the energy, SDNA and HDNA are the overlap and
Hamiltonian matrices, respectively, of the electronic junc-
tion, and �t and �b are the top and bottom electrode self-
energies, respectively, for the interaction with the junction
contents. The Green’s function for gold needed to calcu-
late �t and �b is approximated as in [19]. The transmission
function is obtained from the Green’s function and the self-
energies in the usual way (see, e.g., [18]). The current is then
given by

I = 2e

h

∞∫

−∞
d E T (E)[ ft (E) − fb(E)], (2)

where e is the elementary charge, h is Planck’s constant, E is
the energy of the scattering electron, T is the total transmis-
sion function, and ft and fb are the top and bottom electrode
Fermi–Dirac distribution functions, respectively [18]. This
process is carried out for every snapshot to obtain a time
series for each of the four bases.

The points in the time series are, to a good approximation,
independent since the time for electrons to tunnel (∼10−15 s)
is much smaller than the time between each snapshot record-
ing (10−12 s). This coincides with experiments where we
expect each point in I j

i to be effectively independent since
the time scale governing the molecular disorder that modu-
lates the current (the fastest being water at ∼10−12 s [20])
is much smaller than the typical time scale of measurement
(>10−6 s or a kHz sampling rate [9,12,16]). As a result, we
do not expect the cross-correlations to cut out these fast noise
time scales in the current, rather the slow modes.

A probability distribution for the current values is created
for each of the four bases by binning each respective time
series as seen in Fig. 2. From these probability distributions
we construct a set of time series, {I j

i }, that resemble the sig-
nals generated by a ssDNA passing through a nanochannel
with N pairs of electrodes, or {I j

i }. Each I j
i is the tunneling

current time series from the i th electrode pair and the j th
nucleotide in the ssDNA that is centered around t = 0 for
convenience. Given that the spacing between opposing elec-
trodes is roughly equivalent from electrode pair to electrode
pair along the nanochannel, the pore-electrode environment
would be nearly identical in each case.

3 Cross-correlations

Due to the independence of I j
i and I j

i we can use a Monte
Carlo method in which numbers are generated from a uni-
form distribution and then matched to a current value in the
cumulative distribution function (cdf) for the j th nucleotide
to create the set of {I j

i }. In addition, we can use a cyclic
cross-correlation to maintain a constant overlap length for
any set of time shifts. This is achieved by creating a periodic
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Fig. 2 Normalized current distributions from [10] for the four bases,
A, C, G, T , with one pair of electrodes, where the solid lines are cubic
spline mirror-symmetric interpolations of the dashed line histograms.
The distributions describe the probability of the base-10 log of the cur-
rent due to the multi-scale nature of tunneling currents. The upper inset
plots the sequencing error percentage per base on a log scale against the
number of measurements per base, m. The lower inset plots the Fenton–
Wilkinson approximated variance (see Eq. (12)) for σ 2

N=2,m divided by

the exact variance of log(g j
N=2,m) against m for j = A, C, G, T , where

the color of the line corresponds to the base whose distribution has the
same color (Color figure online)

summation for each I j
i defined as

Ĩ j
i (t) =

∞∑
k=−∞

I j
i (t − kT j

i ), (3)

where T j
i is the length of time I j

i elapses. We then cross-
correlate the N time series for each j th nucleotide together
using

g j
N (τ1, . . . , τs−1, τs+1, . . . , τN ) =

1

T j
s

∞∫

−∞
dt I j

s (t)
N∏

i �=s

Ĩ j
i (t + τi ), (4)

to obtain a single function.
The function g j

N is the N -point cross-correlation, while

τi is the time shift of the i th electrode pair. I j
s is the time

series for the j th nucleotide with the smallest length of time,
T j

s . We choose all but I j
s to be periodically extended so that

no overlapping current values are included more than once
within any Ĩ j

i . By dividing by T j
s the cross-correlation values

are normalized to be independent of the time overlap.
Due to the nature of the probability distributions for

the tunneling currents (see Fig. 2), g j
N covers several

orders of magnitude and thus is best portrayed as log(g j
N ),

where the log is taken as base 10. We then bin cross-
correlation values over the set of {τi } such that each dis-

tinct point log(g j
N (τ1, . . . , τs−1, τs+1, . . . , τN )) with τi ∈

(−T j
i /2, T j

i /2] is a dimension of the histogram (i.e., includ-
ing only one period for each τi ). On the basis of how we
have constructed the set {I j

i } using the properties of statis-

tical independence, we can treat each point in g j
N , and con-

sequently log(g j
N ), as following the same probability distri-

bution. As a result, the joint probability distribution is sym-
metric over the exchange of any two dimensions. However,
because of the built-in correlation between each point of the
cross-correlation g j

N , the joint probability distribution is not
purely isotropic and none of the dimensions may be traced
out.

For ease of computation we build each I j
i to have equal

length (T j
i = T ) and uniform spacing (�t) implying that

the number of measurements taken at each electrode pair,
m = T/�t , is the same for each nucleotide. Since the order
of the nucleotides does not affect the outcome we just need
to compute g j

N for j = A, C, G, T to understand how cross-
correlating the time series from all electrode pairs together
affects the distinguishability of the four DNA bases. How-
ever, to gain this understanding we must construct the set
{I j

i } for N electrode pairs with a certain m value and com-

pute g A,C,G,T
N many times so that we have a large pool of

cross-correlations to interpret and histogram. In this case g j
N

would have d = m N−1 distinct points, meaning that the joint
probability distribution for log(g j

N ) would be d-dimensional.
For reference purposes we add the number of measurements
per electrode pair, m, as an index to the cross-correlation
function, now g j

N ,m , and define g j
N ,m(k), k ∈ [0, d − 1]

as the kth point of the cross-correlation function, essentially
flattening the set {τi } to one index k. After creating the his-
togram for log(g j

N ,m) we linearly interpolate it to obtain the

continuous joint probability distribution P j
N ,m(log(g j

N ,m)),
as seen in Fig. 3.

With P j
N ,m for j = A, C, G, T determined with a given

number of pairs of electrodes, N , and measurements per pair,
m, we can now compute the distinguishability of the DNA
bases. To do this we calculate the average probability of incor-
rectly determining the identity of a DNA base given a set of
tunneling current time series, {I j

i }, from the corresponding
nucleotide. This can be expressed by the following equation
as

eX
N ,m =

〈 ∑
j �=X P̃ j

N ,m(gX
N ,m)∑

j=A,C,G,T P̃ j
N ,m(gX

N ,m)

〉

gX
N ,m

=
〈 ∑

j �=X P j
N ,m(log(gX

N ,m))∑
j=A,C,G,T P j

N ,m(log(gX
N ,m))

〉

gX
N ,m

, (5)

where eX
N ,m is the error probability of choosing base X

correctly with N pairs of electrodes and m measurements
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Fig. 3 Normalized joint distributions, z = P j
2,2(log(g j

2,2)), for j =
A, C, G, T . Since g j

2,2 only has d = 2 distinct points there are only
2 independent dimensions in the joint distributions. These joint distri-
butions are linear interpolations of the original histograms. The color
is only used to further illustrate changes in the z-axis and does not
represent the same z values across different distributions (Color figure
online)

per pair while P̃ j
N ,m is the probability distribution for g j

N ,m

instead of log(g j
N ,m). The average is an ensemble aver-

age taken over all possible cross-correlation functions for
base X . Then we average eX

N ,m over all of the DNA bases,
X = A, C, G, T , to obtain the average error probability per
base to sequence DNA:

EN ,m = 1

4

∑
X=A,C,G,T

eX
N ,m . (6)

4 Results and discussion

With a collection of error probabilities for different values of
m and N we can now evaluate the efficacy of this multiplexing
technique. We have calculated EN ,m for N = 2, m = 2 − 9
and N = 3, m = 2 − 3, as illustrated in Fig. 4. For both
N = 2 and N = 3, EN ,m decreases linearly with increasing
m on a logarithmic scale, meaning EN ,m ∼ βe−am where
β and a are positive constants. Due to limited error data for
N = 3, we compared means and variances to confirm this
general trend. Compared to the sequencing error with a single
pair of electrodes (EN=1,m), which is also linear with m on a
log scale (see the upper inset of Fig. 2), EN=2,m and EN=3,m

have nearly double and triple, respectively, the linear rate of
decline. Because of the exponential relationship with m, we
can claim

EN=2,m ∼ β(EN=1,m/β)2, (7)

and

EN=3,m ∼ β(EN=1,m/β)3. (8)

Therefore the improvement in identification errors is signif-
icant. In fact, more generally we can assume

EN ,m ∼ β(E1,m/β)N . (9)

This result can be easily justified. If the cross-correlation
of the N current signals for each base j , {I j

i }, from an N
electrode pair system did not lose any of the information
contained in the original signals, then Eq. (9) would not be
generous at all but instead nearly exact. However, a cross-
correlation of two different signals certainly results in a loss
of information, which manifests itself in the sequencing error
by decreasing the exponent N by some factor α representing
the fraction of information that was preserved. In other words,
the original Ñ signals contain Ñ m̃ points of information,
but when cross-correlated what remains is some fraction of
that, α Ñ m̃, which results in a more accurate relation between
EN ,m and E1,m ,

EÑ ,m̃ ∼ EN=1,m=α Ñ m̃ ∼ β(EN=1,m=m̃/β)α Ñ . (10)

By calculating the slope of each line, log EN ,m against m
for N = 2, 3, with a linear regression we obtain α = 0.83
for N = 2 and α = 1.00 for N = 3. This suggests that α

saturates to 1 as N increases since with a higher N comes
a better chance to reconstruct the original signals from the
cross-correlation.

On inspection of Eq. (5), one should notice that eX
N ,m

only depends on the probabilities, P j
N ,m(log(gX

N ,m)) with
j = A, C, G, T , and not explicitly on N or m. As a result, for
the error to decrease as it does for N = 2, 3 the joint probabil-
ity distributions for all 4 bases, P j

N ,m where j = A, C, G, T ,
must grow farther and farther apart as N or m is increased to
reduce their overlap. This is indeed the case and we can study
the degree to which the distributions are separated by ana-
lyzing the moments of the distributions. Since analyzing the
form of the joint distributions, as in Fig. 3, becomes too dif-
ficult as the number of dimensions, d = m N−1, is increased,
we settle with analyzing the probability distributions for a
single point of the cross-correlation function (e.g., Fig. 4).

Because the distributions in Fig. 4 have only one inde-
pendent variable, log(g j

2,9(0)) for the top and log(g j
3,3(0))

for the bottom, they are fairly smooth due to the integration
over all of the other dimensions of the joint distribution. The
distributions in Fig. 4 are well approximated by normal dis-
tributions, which makes the distributions for g j

2,9(0), g j
3,3(0),

and generally any other single point of g j
N ,m for any N and

m, approximately log-normal by definition.
A log-normal random variable, Y , is best characterized

by the mean, μ̂, and variance, σ̂ 2, of ln Y , which follows
a normal distribution. log Y is related to ln Y with a mean
of μ = μ̂/c and a variance of σ 2 = σ̂ 2/c2, where c =
ln 10. We can also approximate the original distributions for
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log I j
i in Fig. 2 as normal, making the distributions for I j

i
approximately log-normal as well.

If we then examine the discrete form of Eq. (4) we find that
the unshifted point of the cross-correlation function, labeled
g j

N ,m(p), can be written as

g j
N ,m(p) = 1

m

m−1∑
k=0

N∏
i=1

Ī j
i (k), (11)

where Ī j
i is the discrete form of I j

i indexed by measurement

number. Any other point in g j
N ,m is a similar sum of prod-

ucts except that the set of discrete currents has been shifted.
The product of any number of log-normal random variables
is also log-normal, with its mean and variance parameters
defined as the addition of the mean and variance parameters

a

b

Fig. 4 Normalized distributions for log(g j
2,9(0)) (top) and log(g j

3,3(0))

(bottom) for j = A, C, G, T , where the solid lines are cubic spline
mirror-symmetric interpolations of the dashed line histograms. The
insets plot the sequencing error percentage per base for N = 2 (top)
and N = 3 (bottom) on a log scale against the number of measurements
per base per electrode pair, m (Color figure online)

of the random variables that went into the product. Since,
for a given base j and any index k, every pair of electrodes’
current value, Ī j

i (k), follows the same probability distribu-

tion, the mean and variance parameters for
∏N

i=1 Ī j
i (k) are

simply N μ̂1 and N σ̂ 2
1 , respectively. Here, μ̂1 is the mean of

the natural log of the tunneling current with 1 pair of elec-
trodes while σ̂ 2

1 is the variance whereas μ1 and σ 2
1 would be

the mean and variance of the base 10 log of the tunneling
current, as in Fig. 2. Recalling the properties of indepen-
dence built-in to the set of {I j

i }, we know that each product
in the summation is independent. Therefore we can use the
Fenton–Wilkinson approximation, [21], to obtain the mean
and variance of log(g j

N ,m(0)) (exactly depicted in Fig. 4)

from μ1 and σ 2
1 ,

σ 2
N ,m = σ̂ 2

N ,m

c2 = ln[1 + (eN σ̂ 2
1 − 1)/m]

c2

= ln[1 + (eNc2σ 2
1 − 1)/m]

c2 , (12)

μN ,m = μ̂N ,m

c
= N μ̂1 + N σ̂ 2

1 /2 − σ̂ 2
N ,m/2

c
= Nμ1 + cNσ 2

1 /2 − cσ 2
N ,m/2, (13)

where σ 2
N ,m and μN ,m are the variance and mean of

log(g j
N ,m(0)) while σ̂ 2

N ,m and μ̂N ,m are the variance and

mean of ln(g j
N ,m(0)), for a certain value of j . The Fenton–

Wilkinson approximation assumes that the sum of log-
normal random variables is also log-normal, which is not
exact, and then derives the mean and variance parameters by
moment matching [21].

μN ,m changes dramatically with N , but not much with
m. Therefore as m is increased with a fixed N , it is mostly
the change in σ 2

N ,m that is responsible for the reduced over-
lap between the cross-correlation distributions and conse-
quently the reduced sequencing error, EN ,m . While the mean
of log(g j

N=2,m) coincides almost exactly with μN=2,m , the

variance of log(g j
N=2,m) can differ from σ 2

N=2,m . In the lower

inset of Fig. 2 we plot σ 2
N=2,m divided by the exact vari-

ance of log(g j
N=2,m) against m for j = A, C, G, T to eval-

uate the performance of the Fenton-Wilkinson approxima-
tion. We can see that all four lines seem to be asymptotically
approaching some maximum correction factor. The variance
for adenine and guanine is fairly well represented by the
approximation, explained by the fact that the log (Current/A)
distributions for those two bases are closest to resembling
normal distributions. Thymine’s log (Current/A) distribu-
tion appears to have a bimodal component, which explains
why the Fenton-Wilkinson approximation badly represents
the variance of log(gT

N=2,m). Nevertheless, the approxima-
tion can be used as an analytical upper bound on the exact
variance of log(g j

N=2,m) for j = A, C, G, T . This variance
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is an indicator for the sequencing error but it is not sufficient
to determine the error alone since the joint distributions are
needed.

5 Conclusions

An enhancement to the sequencing by tunneling method is
proposed, in which N pairs of electrodes are built in series
along a synthetic nanochannel. The ssDNA is forced through
the channel using a longitudinal field, as in the original
method [1,2,10], and potentially controlled with gate modu-
lation of nanochannel surface charges [13]. In this manner the
strand of ssDNA passes by each pair of electrodes for long
enough to gather a minimum of m tunneling current mea-
surements, where m is determined by the level of sequencing
error desired. Each current time series for each base, I j

i , is
then cross-correlated together using a cyclic method to bal-
ance the resultant function. With these cross-correlations, one
may identify the DNA base by referring to cross-correlation
probability distributions that would be obtained from a cali-
bration run.

We have shown that indeed the sequencing error is sig-
nificantly reduced as the number of pairs of electrodes, N ,
is increased. Compared to the sequencing ability of a sin-
gle pair of electrodes, cross-correlating N pairs of elec-
trodes exponentially improves this sequencing ability due to
the approximately log-normal nature of the original tunnel-
ing current probability distributions. We have also used the
Fenton-Wilkinson approximation to analytically describe the
mean and variance of the cross-correlations that are used to
distinguish the DNA bases. When bandwidth is limited, this
sequencing method is useful to allow a smaller electrode gap
residence time while still promising to consistently identify
the DNA bases correctly.
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